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2 Institut Nonlinéaire de Nice Sophia Antipolis, 1361 route des Lucioles, 06560 Valbonne, France

E-mail: mackay@maths.warwick.ac.uk and sepulchr@inln.cnrs.fr

Received 16 November 2001, in final form 8 March 2002
Published 26 April 2002
Online at stacks.iop.org/JPhysA/35/3985

Abstract
Hamiltonian chains of oscillators in general probably do not sustain exact
travelling discrete breathers. However solutions which look like moving
discrete breathers for some time are not difficult to observe in numerics. In
this paper we propose an abstract framework for the description of approximate
travelling discrete breathers in Hamiltonian chains of oscillators. The method is
based on the construction of an effective Hamiltonian enabling one to describe
the dynamics of the translation degree of freedom of moving breathers. Error
estimate on the approximate dynamics is also studied. The concept of the
Peierls–Nabarro barrier can be made clear in this framework. We illustrate
the method with two simple examples, namely the Salerno model which
interpolates between the Ablowitz–Ladik lattice and the discrete nonlinear
Schrödinger system, and the Fermi–Pasta–Ulam chain.

PACS numbers: 05.45.−a, 02.30.−f

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper we present a Hamiltonian framework for the description of travelling discrete
breathers (DB) in oscillator lattices. The concept of DB is well-defined mathematically—
a time-periodic solution which is spatially localized [1]—whereas the notion of travelling
DB can be formulated in different ways [2, 3]. Here we consider that a travelling DB is a
spatially localized solution which has essentially two dynamical degrees of freedom (DOF):
a translation DOF which makes the centre of the breather move in time and a vibrational
(or rotational) DOF which evolves periodically in time. So a functional form for describing
these structures could be written as un(t) = F(t, n − ct, n) which is time-periodic with
respect to the first variable, F(t + T , ·, ·) = F(t, ·, ·), and spatially localized with respect
to its second variable (e.g. |F(·, n, ·)| is exponentially localized in space variable n). Such
functional form, however, has not been shown to comply with exact solutions in typical
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anharmonic lattices. (A notable exception is the family of travelling DB of the Ablowitz–
Ladik system (AL) [4].) Moreover, most likely travelling DB are nongeneric phenomena [5].
Nevertheless, spatio-temporal structures which resemble travelling DB have been observed in
numerous numerical simulations, leading to several theoretical analyses which have attempted
to describe these solutions [6–11]. For instance, in [7] the problem of a moving breather is
dealt with by perturbation of the AL system; in [9] numerics are compared with high-order
multiple scale expansions of a Klein–Gordon model, and in [6, 10] the mobility of DB is
related to the stability analysis of DB. In the present work, we would like to approach this
problem from the general point of view sketched in [11]: if we forget about its internal DOF
of vibration, a solution which looks like a travelling DB should be governed by a 1-DOF
effective Hamiltonian that could be constructed, at least perturbatively. In [7] the authors
provided an effective dynamics for the motion of DB in the perturbed AL model, and this was
obtained with the help of the inverse scattering transform of the AL system. Here we propose
a framework which we think is conceptually simpler, and which applies to systems which
are not necessarily integrable. Moreover the method is designed in such a way that the error
estimate is in principle tractable. All that we require is the existence of a set of loops (i.e.
closed curves in phase space) which form a family of approximate DB indexed by a parameter
Q representing a translation DOF. Then, assuming that one can define another parameter P
from the family, which should be identified with a conjugate variable to Q (we will see below
how to deal with this point), we construct an effective Hamiltonian dynamics for P and Q such
that the stationary points of Heff(P,Q) correspond to exact DB, and the approximate dynamics
is accurate for trajectories for which |∇Heff| remains small. The principle of the method was
initiated in [11] and developed from a broader point of view in [12]. The construction of the
effective dynamics is variational and consists in considering the family of approximate periodic
solutions as exact critical points of the averaged Hamiltonian subjected to constraints of fixed
P and Q, and fixed area (recall that the latter is defined as

∫
p dq in canonical coordinates).

Then we show that the slow dynamics for (P,Q) can be deduced from the associated Lagrange
multipliers.

The paper is organized as follows. In section 2 and 3 we recall the principle of the method
in an abstract way, so that it can be useful for applications in contexts different from those of
DB. Section 3 is devoted to estimating the error made in approximating the actual dynamics
by an effective one. In section 4 and 5 the method is applied to specific examples related to
travelling DB. First, in section 4 we consider the Salerno model (a subtle interpolation between
the AL model and the discrete nonlinear Schrödinger system), and give analytical results on
moving DB in this model. The latter are illustrated by some numerical simulations. In the next
section, the method is applied to some travelling localized solutions of the Fermi–Pasta–Ulam
model (FPU), both analytically and numerically. Conclusions are drawn in section 6.

2. The method of the effective Hamiltonian

The method of the effective Hamiltonian that we consider in this paper was initiated in
[11] in the context of dynamics of generalized multibreathers. In the present paper, it
is presented in a more general way so that it should be applicable to a broader range of
situations. The starting point is the variational formulation of the Hamiltonian dynamics. In
this framework, (E, α,H) is given where E is an exact symplectic manifold (the phase space),
α is a non-degenerate one-form called the area form (

∑
j pj dqj in canonical coordinates)

and H is a Hamiltonian function. Then the dynamics is given by the principle of least action.
It says that z(t) is a solution of the Hamiltonian system if it stationarizes the action defined by
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W(z) =
∫ tf

t0

(
H(z) − α

[
dz

dt

])
dt

in the space of C1 trajectories with fixed ends δz(t0) = δz(tf ) = 0. This prescription imposes
that the dynamics is governed by a vector field dz

dt which can be computed for each z ∈ E as
the (unique) solution of the equation

dαz

[
ξ,

dz

dt

]
= dHz[ξ ] for all ξ ∈ TzE . (1)

Here dα is a two-form which is called the symplectic form associated with the Hamiltonian
dynamics. Indeed, when z = (p, q) and α = ∑

j pj dqj , the latter equation turns out to be
nothing but the canonical Hamiltonian equations(

0 1
−1 0

)(
ṗ

q̇

)
=
(
∂pH

∂qH

)
(2)

since in this case, dα = ∑
dp ∧ dq , which is the above square matrix when written

in components. Below, however, we will see examples with non-canonical coordinates.
Moreover, this general formulation of Hamiltonian dynamics can be adapted to defining
Hamiltonian dynamics on a set of loops as follows.

Let L1 be the space of C1 period-1 loops in E . Then, if z ∈ L1, TL1 is the space of C0

loops ξ such that ξ(s) ∈ Tz(s)E for all s ∈ [0, 1]. The symplectic form dα given on TE induces
a symplectic form � on TL1 defined by

�[ξ, ζ ] =
∮

dαz[ξ(s), ζ(s)] ds. (3)

Here and in the following the notation
∮

means that we compute the mean value of a periodic
function over one period. Then the natural extension of equation (1) to loop space is written

�

[
ξ,

dz

dt

]
=
∮

dHz(s)[ξ(s)] ds for all ξ ∈ TzL1. (4)

This idea goes back to Weinstein [13]. Here dz
dt represents a vector field on the loop z(s) whose

integration from t = 0 provides a function z(t, s) describing the deformation of the initial loop
in time. So far there is no approximation. The goal of this section is to propose a good estimate
of z(t, s) when we know a family of period-1 loops {zµ(s)}µ which forms an approximate
invariant manifold M of L1. (This means that each loop is nearly a periodic solution of the
Hamiltonian system, provided that it is parametrized with the appropriate period, which is not
necessarily equal to 1.) We will see later how such a family can in principle be constructed.
The loops are indexed by an even number of parameters µ = (a, φ0,p,q), where a is the area
of the loop

a =
∮

α[∂szµ] ds

and φ0 is a reference phase along the loop

z(a,φ0,p,q)(s) = z(a,0,p,q)(s + φ0).

The other parameters (p,q) ∈ R
2m should play the role of conjugate variables and we will see

how to check that point below.
Now if we start with an initial loop on M, then by assumption it will stay for a long

time on this subspace, but with a slow drift in parameters µ. The actual trajectory can be
approximated by

z(t, s) ≈ zµ(t)(s) ∈ M (5)
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and we want to find an approximate dynamics for variables µ(t). Thus the latter play the
role of ‘collective coordinates’ widely used in the study of solitons [14]. Let us note that in
equation (5) we are not interested in the variable s and will make it disappear by averaging.
Now, we consider equation (4) as the basic equation to determine the dynamics dz

dt . A natural
simplification of equation (4) is to ‘project’ it on TM by restricting the vectors dz

dt and ξ to be
tangent to TM. This is relevant because we assume that space M is nearly invariant under
the dynamics. So we propose the following equation to compute the evolution of dµ

dt :

�

[
ξ,Dµzµ

dµ

dt

]
=
∮

dHzµ(s)
[ξ(s)] ds for all ξ(s) ∈ TzµM. (6)

The benefit of this projection is that the number of DOF has been reduced to the number
of components of µ, or even better, to the dimension m of (p,q). To convince oneself that
this is true, we consider now the simple case µ = (a, φ0, P,Q), and will write the effective
Hamiltonian dynamics for (P,Q), deduced from (6). The tangent vectors to the loops are
decomposed along these coordinates µ. In particular, the approximate vector field is written
as

dzµ
dt

= ȧ∂azµ + φ̇0∂φ0zµ + Ṗ ∂P zµ + Q̇∂Qzµ

with the dots denoting the derivative with respect to time t. First it is easy to show that ȧ = 0
by substituting ξ = ∂szµ(= ∂φ0zµ) in (6), and noting that

∂µk

∮
zµ

α =
∮

dα[∂µk
zµ, ∂szµ]

the latter vanishes for any component of µ but the first one, since
∮
α = a(= µ1) is constant.

Secondly, by using the same fact, and substituting ξ = ∂P zµ or ∂Qzµ in (6), one obtains a
direct generalization of the canonical equation (2) as follows:(

0 τPQ

−τPQ 0

)(
Ṗ

Q̇

)
=
(
∂P Heff

∂QHeff

)
(7)

where the effective Hamiltonian is defined as the mean energy along the loop indexed by
(P,Q)

Heff(a, P,Q) =
∮

H
(
z(a,φ0,P ,Q)(s)

)
ds (8)

and is to be used with an effective symplectic form whose components are determined by

τPQ(µ) = �[∂P zµ, ∂Qzµ]. (9)

Equation (7) generalizes obviously for multi-component (p,q). Then τpiqj
becomes a matrix.

An important remark is that the effective dynamics is well defined only if the associated matrix
τ is invertible for all µ. This is what we meant by saying that (p,q) should be ‘conjugate
variables’, as we required at the beginning of this section. A second remark is that since ȧ = 0
we see directly that the effective dynamics takes place in a family of loops with constant area.
It is well known that area is an adiabatic invariant for perturbation of an integrable Hamiltonian
system. Note that here the system is not assumed to be integrable, however.

A third remark is that, in practice, the Hamiltonian system often depends on a small
parameter, say Hε and αε depending on ε, but typically the family of loops zµ is only known in
the unperturbed case ε = 0. In this situation, it might be difficult to find explicit continuation
of zµ for ε �= 0. Nevertheless, equation (7) can generally be written at the first order in ε,
using an approximate effective Hamiltonian Heff

ε ≈ Heff
0 + Veff (and an approximate effective

symplectic form), where Veff is obtained by averaging the perturbation Hε − H0 around the
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loops zµ. Examples will be provided in sections 4 and 5. Prior to this we will study how
to estimate the error

∣∣ dzµ
dt − XH(zµ)

∣∣ where XH(zµ) is the actual Hamiltonian vector field
associated with H and α and defined by (1).

3. Estimating the approximation error

The accuracy of the approximations (6) and (7) will depend on the choice of M as
a good approximate invariant manifold of the dynamics. In this section we analyse
how such an approximate invariant manifold could be constructed and estimate the error
|$X| = |XHeff (zµ) − XH(zµ)|, where XH(zµ) and XHeff (zµ) are respectively the Hamiltonian
vector field and the effective Hamiltonian vector field. The result that we aim to show in this
section can be written as follows:

‖$X‖ � K‖∇Heff‖ cos γ (10)

where K is a bounded constant, and γ is an angle between two submanifolds to be defined
below. This inequality is useful as it shows in which cases the approximation can be good.

We recall that E is a symplectic phase space with the symplectic form dα defined on the
tangent bundle TE , and L1 is the space of C1 period-1 loops in E which inherits a symplectic
form defined by (3). We suppose that there is also a scalar product (·, ·) on TE and endow
TzL1 with the scalar product (and the associate norm L2) defined by

〈ξ, ζ 〉 =
∮

(ξ(s), ζ(s)) ds

= ‖ξ‖ ‖ζ‖ cosϕ

where ϕ is called the Euclidean angle between ξ and ζ belonging to TzM. Likewise, we
assume that the symplectic form � can be written as

�[ξ, ζ ] = ‖ξ‖ ‖ζ‖ cos θs

where θs is called the symplectic angle between ξ and ζ .
Before using these definitions, we want to specify how one can obtain the family of loops

{zµ(s) ∈ L1}µ considered in the previous section. We suppose that there is a function G
defined on E such that∮

G(zµ) = (p,q) (11)

and a phase function * such that∮
*(zµ) = φ0.

Then, as already stated in [11], if zµ(s) is an approximate periodic solution of the Hamiltonian
system, it can also be viewed as a critical point of the mean energy

∮
H subjected to fixed

area, a = ∮
α(z), fixed phase φ0 = ∮

* and fixed parameters (p,q) = ∮
G. Equivalently, zµ

is defined as a critical point of the constrained energy

H(z) =
∮

H(z) − f

(∮
α[∂sz] − a

)
− k

(∮
*(z) − φ0

)
− λ

[∮
G(z) − (p,q)

]
(12)

where f, k and λ are Lagrange multipliers. Moreover, it is not difficult to prove that [11]

f = ∂aHeff

k = ∂φ0 Heff = 0

λ = ∂(p,q)H
eff

with Heff(µ) = ∮
H(zµ). (Here ∂(p,q) denotes the vector (∂p1, ∂p2, . . . , ∂q1, ∂q2, . . . , ∂qm)).
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Then M can be redefined as the subspace of L1 formed by the critical points zµ of H(z)

and parametrized by µ. We also assume that L1 can be foliated by the subspaces

Fµ =
{
z ∈ L1 |

∮
α[∂sz] = a,

∮
*(z) = φ0,

∮
G(z) = (p,q)

}
in such a way that each tangent loop v of TzµL1 can be written as a sum v = ξ + η, with
ξ ∈ TzµM and η ∈ TzµFµ. Note that the latter is defined as

TzµFµ =
{
η ∈ TzµL1 |

∮
dα[η, ∂szµ] = 0,

∮
d*(η) = 0,

∮
DG(η) = 0

}
. (13)

Now, to achieve estimate (10), the main step consists in showing that

�[$X, ξ + η] = �[XHeff, η]. (14)

Indeed, by using definition (6) of XHeff , we have that for all ξ ∈ TzµM

�[ξ,XHeff ] =
∮

dαzµ [ξ,XHeff ] =
∮

dH [ξ ] = �[ξ,XH ]. (15)

Consequently, �[ξ,$X] = 0. Secondly, by expressing that δH = 0 (from equation (12)) in
conjunction with equation (13), one deduces that, for all η ∈ TzµFµ

�[η,XH ] =
∮

dHzµ[η]

= 0. (16)

So, equations (15) and (16) imply equation (14).
On the other hand, as � is non-degenerate, there exists v = ξ + η such that

�($X, ξ + η) = ‖$X‖ ‖ξ + η‖ cos θs with non-vanishing θs . Therefore, for this v

‖$X‖ = �($X, ξ + η)

‖ξ + η‖ cos θs

= �(XHeff , η)

‖ξ + η‖ cos θs

= ‖∇Heff‖ ‖η‖
‖ξ + η‖

cosϕ

cos θs

where ϕ is the Euclidean angle between ∇Heff and η. By taking the supremum over ξ ∈ TM
we get

‖$X‖ � ‖∇Heff‖ cosϕ

cos δ cos θs
with δ being the Euclidean angle between ξ + η and η. Finally, one can replace ϕ by

γ = inf
ξ∈TzM,η∈TzFµ

arccos |〈ξ, η〉| (17)

which we define as the angle between TzµFµ and TzµM. In conclusion we obtain the above
equation (10). We see that if γ = π

2 for all zµ, the effective dynamics is exact since we have
‖$X‖ = 0. In general it is not the case but nevertheless the error can be quite small in a
neighbourhood of critical points of Heff , which are true periodic orbits of the system. Finally
note that estimate (10) depends on the full dynamics, not only on the approximating one. For
example, modifying the actual system without changing the approximating dynamics amounts
to changing the foliation Fµ, which in turn will change the angles defined in (17) and in
previous equations, and so the constants in estimate (10).
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4. Salerno’s model

In this section we illustrate the theory presented in section 2 on an interesting model proposed
by Salerno, whose Hamiltonian can be written as follows [14, 15]

Hε = −
∑
n

[
φ∗
n(φn+1 + φn−1) +

2ε

γ − ε
|φn|2 − 4γ

(γ − ε)2
log

(
1 +

γ − ε

2
|φn|2

)]

to be used with the area form

αε = i
2

γ − ε

∑
n

log

(
1 +

γ − ε

2
|φn|2

)
dφn

φn

. (18)

So the symplectic form dαε = �ε is computed as

�ε = i
∑
n

dφ∗
n ∧ dφn

1 +
(
γ−ε

2

) |φn|2
.

Here the conjugate variables are
(
iφ∗

n, φn

)
. Note that the symplectic form is canonical only

when γ = ε.
The Salerno model has the nice property to provide a Hamiltonian interpolation between

two well-studied systems, namely the Ablowitz–Ladik system (AL), for ε = 0, and the discrete
nonlinear Schrödinger system (DNLS), when ε = γ [4, 14]. In the latter limit, the expression
of Hγ seems singular, but using the expansion of log(1 + x) one easily checks that

lim
ε→γ

Hε = −
∑
n

[
φ∗
n(φn+1 + φn−1 − 2φn) +

γ

2
|φn|4

]
(19)

which gives, using �γ , the DNLS equation

iφ̇n + γ |φn|2φn + (φn+1 + φn−1 − 2φn) = 0.

On the other hand, when ε = 0, the evolution equation (with the non-canonical form �0) is
found to be the AL equation

iφ̇n +
γ

2
|φn|2(φn+1 + φn−1) + (φn+1 + φn−1 − 2φn) = 0

which is known to be completely integrable. In particular, the AL system possesses a family
of moving DB that can be explicitly written as

un(t) =
√

2

γ
sinh β

e−i(ωt−kn)

coshβ(n − ct)
(20)

with parameters β, γ, k and ω = 2(1 − cos k coshβ). The velocity of the DB is given by

c = 2 sin k
coshβ

β
. (21)

Our aim is to show that the method of the effective Hamiltonian applies here to analyse moving
DB in the Salerno model. First we will interpret the travelling DB of the AL system (20) as
a trivial one degree of freedom dynamics governed by a simple effective Hamiltonian system.
Next we will use these exact travelling solutions to describe approximate moving breathers for
ε �= 0, and in particular for the DNLS system. In the following we set γ = 2 for convenience

(or equivalently we rescale the amplitude of φn to
√

2
γ
φn).

We consider the following family of period-1 loops

zn(s) = sinhβ
e−i(2πs−kn)

coshβ(n − Q)
(22)
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(c)

(d )

0 1 2 3 4

0

Q

k
(a)

π

0 1 2 3 4

0

Q

k

(b)

π

Figure 1. (a) Effective Hamiltonian phase portrait for travelling DB in the AL lattice (ε = 0 in
the Salerno model). (b) Perturbation of the (ε = 0) phase portrait in the Salerno family (ε = 1,
β = 1.5). (c) ‘Anti-phase’ DB when k = π in (20) and (d ) ‘in-phase’ DB when k = 0. In both
examples, the real part is shown with β = 1.5, Q = 3.15.

with parameters Q, k and β. We first compute the area of these loops, using the area form
(18), and find that∮

z

α0 = 4πβ. (23)

Note that this is an exact result, which can be obtained by a Poisson summation. As this
technique is frequently used in this section, it is recalled in the appendix.

So, we note that (22) forms a family of loops with constant area, if β is fixed. Next, it
is easy to check that these loops form a family of exact periodic solutions of the AL equation
only when k = 0 or π , and if the time s is scaled properly as in equation (20). Moreover,
the amplitude of these solutions is exponentially localized in space about position nc = Q,
thus these loops constitute a continuous family of DB parametrized by a translation coordinate
Q (see figures 1(c) and (d )). This is exactly what we want to get moving breathers, except
that we need a conjugate variable to Q. We can try to use variable k if the symplectic form
�0 restricted to coordinates (k,Q) is non-degenerate. As explained in section 2, this can be



Effective Hamiltonian for travelling discrete breathers 3993

checked by computing equation (9), namely,

τ (k,Q) =
∮

�0(∂kz, ∂Qz) = 2β

which is nonzero for β �= 0. Now, if k is near 0 or π , the family of loops (22) is interpreted
as forming an approximate invariant manifold in phase space, parametrized by (k,Q), on
which it could be possible to describe the slow evolution of (k,Q). To this end we just have
to compute Heff

0 given by equation (8). After some computations which involve the same
technique as before we find

Heff
0 = −4 cos k coshβ.

Using �eff = 2β dk ∧ dQ, one gets the following equations of motion:

k̇ = 0

Q̇ = 2 sin k coshβ

β
.

Therefore the dynamics of DB is extremely simple in this case, since they move with constant
speed Q̇ (which coincides with formula (21)). The corresponding phase portrait is sketched
in figure 1(a).

Let us note that other ‘conjugate’ variables to Q could have been chosen. For example, it
might be natural to think of the following conserved quantity of the AL system, which can be
interpreted as the ‘momentum’ of the system

P = −i
∑
n

φ∗
n(φn+1 − φn−1).

Computing the momentum of loops (22) with the same technique as for (23) we get

P({zn}) = 4 sin k sinh β. (24)

So we have P = 0 for DB (k = 0 or π) which is consistent with the fact that these structure are
immobile. On the other hand,we can look at (22) with arbitrary k as periodic solutions of the AL
system under the constraint that

∮
P has a nonzero value fixed in [−sinhβ, sinhβ]. As before,

these periodic solutions enable one to construct an effective Hamiltonian in variables (P,Q),
which has the form Heff

0 (P,Q) = 4β −
√

16 sinh2 β − P 2, and the associated dynamics is quite
simple: Ṗ = 0; Q̇ = P

2β .
The method of the effective Hamiltonian generally gives only approximate solutions, but

in the special case of the AL system, it describes exact moving breathers. (We expect that
the symplectic angle defined by (17) is equal to π/2 in the present case.) Now we want to
compute an effective Hamiltonian for the Salerno interpolation, i.e. when ε �= 0. In this case
we do not know the exact periodic solutions of the system with constraints of constant area
and fixed (k,Q) but we can use family (22) to produce a perturbative scheme, as explained in
section 2. Then at first order in ε, the effect of perturbation is to change Heff

0 to Heff
0 + Veff with

Veff = −ε4π2 sinh2 β

β2 sinh
(
π2

β

) cos(2πQ) + O

(
εe− 2π2

β cos(4πQ)

)
. (25)

Therefore, Heff now depends on Q and the phase portrait of figure 1(a) is changed to the
pendulum-like phase portrait of figure 1(b). We see that the line of critical points (k = 0
or π) of the former has turned into a set of isolated equilibria which correspond to (exact) DB
of Salerno’s system. More precisely, these DB are centred at Q = n

2 (n ∈ Z). The in-phase
DB (i.e. k = 0) are stable for n even and unstable for n odd, and the converse situation holds
for the anti-phase DB (k = π). In this picture, if a stable discrete breather is perturbed, its
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position Q simply oscillates periodically, since in space (k,Q), its trajectory is trapped within
the corresponding island. On the other hand, the stable DB can be set into motion by a kick
of momentum which brings the state of the system outside the islands of the stable critical
points. This change of momentum amounts to crossing a minimal energy barrier which is
called the Peierls–Nabarro barrier by analogy with the theory of moving localized defects in a
solid. Thus in the context of DB, as already mentioned in [11], the PN barrier is defined as the
difference of potential energy $Veff between the stable and the unstable breathers with same
area.

In fact, the phase portrait depicted in figure 1(b) was already presented by Claude et al [7]
in order to analyse the motion of DB in anharmonic chains with on-site potential. In particular,
they pointed out that there is a critical value βc above which the saddle-nodes of lines k = 0
or those of k = π are no longer connected horizontally, but connect vertically in the plane
(k,Q). This βc depends on ε, and Claude et al obtained βc � 3.6862, which corresponds to
ε = 2 in (25). For β > βc, the trajectories with monotonically increasing (or decreasing) Q are
lost, and so are the moving DB. This explains, at least qualitatively, why the large amplitude
DB (which occur for large β), are always trapped in the anharmonic chains of the Salerno
family (with ε �= 0). We remark, however, that rigorous conclusions should take into account
that the method of the effective Hamiltonian works well only when the size of the islands is
small, which is the case for β � βc, since only in this case is the error estimate guaranteed
to be small (equation (10)). In fact, numerical simulations reported in [9] demonstrate that
the trapping of DB happens with amplitudes corresponding to β much smaller than βc. This
tendency to pinning will also be illustrated below by a numerical simulation.

We also note that if one is interested in the limit ε = 2, which indeed corresponds to
the DNLS limit of the Salerno family, then, in view of equation (19) (recall γ = 2), the
effective potential should not be determined by setting ε = 2 in (25), but should be estimated
by substitution of (22) in

∑
n

(
2‖φn‖2 − ‖φn‖4

)
. One obtains the new effective potential as

Veff = 8π2 sinh2 β

β2 sinh
(
π2

β

) (1 − 1

3

[
1 +

π2

β2

]
sinh2 β

)
cos(2πQ) + O

(
e− 2π2

β

)
.

For this potential there is also a critical β, but now evaluated as βc � 1.695. To end
this section, we wish to show how the analysis presented above can be matched with direct
numerical simulations of the Salerno equations, projected on the effective phase space spanned
by coordinates (k,Q). For this purpose, we have to find a function G = (G1,G2) (see
equation (11)), such that∮

G({φn}) = (k,Q)

when φn is replaced by loops (22). The function G1 can be determined from equation (24),
and the function G2 can be defined by

G2({φn}) =
∑

n n log
(
1 + ‖φn‖2

)
∑

n log
(
1 + ‖φn‖2

) .

We consider a chain of 99 oscillators with periodic boundary conditions and integrate
numerically the Salerno equations with ε = 0.1 and initial conditions given by a member of
loop family (22), with β = 1 and small k. The evolution of variables

(k̄(t), Q̄(t)) = 1

T

∫ t+T

t

G({φn(t
′)}) dt ′ (26)

is followed in time and plotted in the plane (k,Q). The period T is chosen as the one of the DB
(k = 0). Figure 2 shows two trajectories which are consistent with the effective separatrices
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Figure 2. Solid lines: projection of the (k̄, Q̄) variables (equation (26)) computed from the
numerical integration of the Salerno model (ε = 0.1) in the effective phase portrait of figure 1.
Dashed lines correspond to the theoretical separatrices. Parameter β = 1.
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-0.05

0

0.05

Q

k

Figure 3. The dotted line shows the evolution of function G without averaging (see text). The
corresponding averaged trajectory is indicated by solid line. Same parameters as in figure 2 but
ε = 0.2.

(i.e. the frontiers of the islands). The latter are computed from Heff(k,Q). Let us note that
performing the averaging of G is crucial to eliminate the effect of global phase of the loops
on the dynamics. This point is illustrated in figure 3 where trajectories are compared with and
without averaging G.

Next, increasing slightly ε, one observes an example of trapping phenomenon which is
not predicted by the effective Hamiltonian. Figure 4 shows a trajectory which starts outside
the trapping islands, but which ends on pinning due to a decrease of k in time. For this value of
ε = 0.2, this behaviour is observed for any initial k. It is presumably related to the interaction
of the DB with its own radiation, due to finite size of the system, but it could be interesting
to investigate this point further. In any case, we numerically observe that the validity of the
effective Hamiltonian description in a finite chain is limited to relatively low value of ε.

5. Weakly localized travelling discrete breathers in FPU chains

We consider another situation where the framework of the effective Hamiltonian can be used
to describe approximate travelling DB, namely the Fermi–Pasta–Ulam (FPU) system on a
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Figure 4. Anomalous trapping of a travelling DB (w.r.t. the expected effective Hamiltonian).
Parameters are as in figure 3.

ring. This model has been theoretically studied recently by different authors [16–18]. It is
given by a closed chain of identical masses anharmonically coupled to their first neighbours

H =
N∑

n=−N

(
p2

n

2
+ V (xn+1 − xn)

)
. (27)

The number of particles is assumed to be odd, and equal to M = 2N + 1. We consider the
so-called αβ-FPU system in which the anharmonicity is at most quartic

V (x) = x2

2
+ α

x3

3
+ β

x4

4
.

First we recall some standard results concerning the complete analysis of the harmonic chain
α = β = 0. In this case H0 can be diagonalized by a discrete Fourier transform as follows:

zk = 1√
2Mωk

N∑
n=−N

(ωkxn + ipn) e−i2πkn/M (28)

where ωk = 2
∣∣ sin

(
kπ
M

)∣∣ for (k = ±1,±2, . . . ,±N), and the k = 0 component is treated
by defining p̄0 = 1√

M

∑
n pn and x̄0 = 1√

M

∑
n xn. The change of coordinates (pn, xn) →

(p̄0, x̄0, iz∗
k , zk) is canonical, i.e. the symplectic form is written � = ∑

n dpn ∧ dqn = dp̄0 ∧
dx̄0 + i

∑
k dz∗

k ∧ dzk. The expression of H0 simply becomes

H0 = p̄2
0

2
+

N∑
k=1

ωk

(|zk|2 + |z−k|2
)

and we can assume that the centre of mass of the chain is at rest, i.e. p̄0 = 0. In this setting,
it is readily seen that the general (vibrational) solution is a superposition of N distinct modes
(the phonons) which are two-fold degenerate.

It is yet simpler to describe the phonons of frequency ωk with the help of action-angle
variables defined by

zk =
√
Jk e−iψk

(29)
z−k =

√
J−k e−iψ−k .

This second canonical transformation simplifies further the Hamiltonian into

H0 =
N∑

k=1

ωk(Jk + J−k)
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1 25
0
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n

h n

Figure 5. Enhancement of the localization of energy density hn after a lapse of time t = 100 in the
numerical simulation of the FPU chain (solid line), as compared with the initial condition given
by ansatz (32) (dotted line). The parameters are chosen as in figure 6.

such that the evolution of the variables is trivially given by

ψk = ωkt + ψ0
k

ψ−k = ωkt + ψ0
−k

and the actions Jk are constant. Note that we can easily come back to the physical displacement
xn by inverting transformations (28) and (29). For instance, the phonons of frequency ωN

form a 4-parameter family of periodic solutions which can be written as

xn(t) =
√

2

MωN

[√
JN cos

(
ωNt − σNn + ψ0

N

)
+
√
J−N cos

(
ωNt + σNn + ψ0

−N

) ]
(30)

with σN = 2πN
M

.
Strictly speaking there are no DB in the harmonic chain. Nevertheless we can consider

that some periodic solutions of this system are weakly localized in space, namely the phonons
with the upper frequency,ωN , and with JN = J−N . The latter correspond to the standing wave

xn(t) = 2

√
2JN

MωN

cos

(
ωNt +

ψ0
k + ψ0

−k

2

)
cos

(
σNn − ψ0

k − ψ0
−k

2

)
. (31)

By writing σNn = πn
(
1 − 1

2N+1

)
the spatial shape of this periodic solution can be seen as

follows:

cos

(
σNn − ψ0

k − ψ0
−k

2

)
= (−1)n cos

(
π

2N + 1
n − ψ0

k − ψ0
−k

2

)

so it corresponds to the anti-phase oscillations (−1)n modulated by a one-bump envelope which

is centred around θ ≡ ψN−ψ−N

2 = ψ0
N−ψ0

−N

2 . One can check that the energy density (defined as
hn = pn

2 + 1
2 (V (xn+1 −xn)+V (xn −xn−1))) is also localized in this weak sense. Therefore the

relative phase variable θ plays the role of a spatial coordinate of a periodic solution which is
weakly localized. Let us call it a weakly localized discrete breather. This name can be justified
a posteriori, because we note by numerical simulations that the localization of this periodic
solution is enhanced when the anharmonicity is turned on (see figure 5).

In order to construct an effective Hamiltonian for θ we need to specify its conjugate
variable. Here it is natural to consider the relative action JN − J−N . This motivates a further
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canonical transformation as follows:

a = JN + J−N

J = JN − J−N

ϕ = ψN + ψ−N

2

θ = ψN − ψ−N

2
.

The first variable a is proportional to the area of the periodic solutions defined by equation (30).
In fact the exact relation is

area =
√

2

MωN

2πa.

By extension, let us call a the area in the following. Therefore, for fixed area, equation (30)
defines a two-dimensional family (parametrized by J and θ ) of periodic solutions of the chain
when β = 0. In the spirit of section 4 this family can be used as a submanifold of loops in
order to obtain an effective dynamics of J and θ . Thus we substitute

xn(J, θ; s) =
√

2

MωN

[√
a + J

2
cos(2πs − σNn − θ) +

√
a − J

2
cos(2πs + σNn + θ)

]
(32)

in the FPU-Hamiltonian (27) (with pn = ẋn) and obtain, after averaging over s, and at the
lowest order in (α, β)

Heff � ωa +
3

16
β
ω2

M
(3a2 − J 2).

We remark that this Hamiltonian is a particular case of the (Birkhoff) normal form Hamiltonian
obtained by Rink for the periodic β-FPU chains, when only modes ωN are excited [18]. In
view of this Hamiltonian, the variable θ (or more precisely its averaged value) has now a drift
which is given by

θ(t) = −3

8
β
ω2

M
Jt + θ0. (33)

The drift (33) is associated with the slow motion of the weakly localized DB defined
by equation (31). To make this clear, we compute from equation (32) the averaged square
amplitude of xn(J, θ, s), when J is small compared to a∮

|xn(J, θ; s)|2 ds ≈ a

MωN

cos2(σNn − θ(t)).

Let us note that at this order of approximation J is constant, since Heff does not depend on θ .
So the phase portrait is like that of figure 1(a), and at this level of approximation there is no
PN barrier. This may be related to the observations that mobile breathers are easily observed
in numerical simulations of the FPU systems. It is likely, however, that a PN barrier would
show up at a higher order in α or in β, and this could be interesting to estimate explicitly.

We have performed some numerical simulations of the FPU model to illustrate the theory.
We use a small chain of 25 particles and integrate numerically the dynamics in (pn, xn)

variables with a Runge–Kutta method. We monitor the time evolution of the relative phase
θ which is deduced from the numerics as θ = 1

2 arg(zNz∗
−N ), where zN is computed with the

help of equation (28).
We start with an initial area of a = 0.05. As mentioned above the effect of anharmonicity

reinforces the localization of the solution, as compared with the shape of the ansatz
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Figure 6. Evolution of the coordinate θ in time (see text). The straight lines indicate the prediction
of the effective dynamics, given by equation (33). The parameters of the FPU model are chosen
as α = 0, β = 1, a = 0.05, θ0 = − π

2 , J0 = −0.01. Panel (a) is an enlargement of a part of the
graphic of panel (b), corresponding to the time lapse [0, 50].
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-1.5 -1
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Figure 7. (a) Evolution of θ as in figure 6(b), but the area of approximate DB is doubled, a = 0.1.
The straight line shows the simple dynamics given by equation (33). (b) The actual phase trajectory.
The effective phase space should be more than two dimensional.

(figure 5). On a time interval of order 25T, where T = 2π/ωN is the period of the fast
oscillations, we see that the evolution of variable θ is almost linear and the slope of the line is
in good agreement with equation (33) (figure 6(a)). The fast oscillations of θ can be eliminated
by averaging, as explained in the previous section. Figure 6(b) shows the evolution of θ on
a much longer timescale. One sees a discrepancy growing between the actual dynamics θ(t)

and its linear estimate given by equation (33). Let us note that at the same time fairly constant
values of variables a and J were observed. With these parameters, and for any initial value of
θ we have not observed any trapping of the weakly localized discrete breather. If we consider
an initial area which is two times higher but still small, a = 0.1, we observe that the effective
dynamics describes fairly well the actual dynamics for the same time interval as compared
with the previous case (of order 25T). However, here the discrepancy grows faster with large
amplitude oscillations (figure 7(a)), and the numerics show that area a is no longer constant.
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Nevertheless, the linear approximation given by (33) describes the global drift of the relative
phase. In the local phase (θ, J ), the trajectory is still drifting in θ but not like the simple linear
drift predicted for the effective dynamics (figure 7(b)). Again in this case, no pinning state is
observed for various initial values of θ .

To end this section we point out that recently a proof of the existence of DB in FPU chains
has been obtained by James [20]. These DB can also be described as ‘weakly localized’ for
small amplitude since although they are exponentially localized the spatial decay rate goes to
zero with the amplitude. So by deducing from his result an analytical form for a family of
(approximate) DB solutions it could be interesting to consider the latter as a starting point for
constructing the effective Hamiltonian.

6. Conclusions

In this paper we have proposed a framework to figure out the approximate travelling DB as
trajectories described by an effective 1-DOF Hamiltonian. Our method can also be regarded
as a method of collective coordinates for the loops in Hamiltonian systems, based on an
averaging procedure, and designed so that the error can in principle be estimated. The effective
Hamiltonian is constructed as the averaged energy along loops representing approximate DB
of the system with fixed area, and indexed by a spatial-like parameter. This Hamiltonian
possesses critical points which correspond to exact DB of the chain. Some of them may be
stable, others are unstable. Around the stable DB the trajectories of the effective Hamiltonian
are closed and form an island of quasi-periodic breathers. The smaller the size of these
islands, the better the approximation because in this case the error given by equation (10)
is small. In the effective phase portrait, the difference of potential energy between the
stable and the (most) unstable DB can be defined as the Peierls–Nabarro barrier for DB. Thus
the simple picture which emerges from this framework is that if one starts with an approximate
DB with energy slightly above the PN barrier, it travels, drifting along separatrices, in the
effective phase space.

To illustrate the theory we applied the method to simple tutorial models, both analytically
and numerically. In particular the concept of PN barrier for DB is illustrated on the Salerno
model. For the FPU model, no PN was found at the lowest order in the anharmonicity
parameters. Further applications could be thought of, however, to give insight into the
travelling DB in more realistic models. For example, a recent paper by Tsironis et al [21]
proposed a modification of the FPU model to take into account the curvature of discrete
curvilinear chains that model biopolymers. If this curvature is small enough, it plays the role
of a perturbation of the standard FPU model and an effective potential could be computed
for the family of loops (30), so that the effect of such curvature could be estimated on loose
DB defined in the previous section. Another perspective is to consider the application of
the effective Hamiltonian method to describe the travelling DB in Davydov- or Holstein-like
models [14]. Preliminary work is in progress in this direction.
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Appendix

In this appendix we briefly recall the technique of Poisson summation and use it to obtain
equation (23). The same method is used to compute various quantities in section 4, as for
instance, P,Heff,�eff and Veff .

The following result is standard in signal analysis [19] and is known as the Poisson
summation formula

∞∑
n=−∞

f (n) =
∞∑

n=−∞
f̂ (n) (34)

where f̂ is the Fourier transform of f defined by

f̂ (ν) =
∫ ∞

−∞
f (x) e−i2πνx dx.

Now we want to compute
∮
z
α0, i.e. integrate the area form (18) over a loop of family

(22). Integration over time is trivial and gives

a(β,Q) = 2π
∑
n

log

(
1 +

sinh2 β

cosh2(β[n − Q])

)
.

First choose Q = 0 and compute

∂a

∂β
(β, 0) = 2π

2 sinhβ

β

∑
n

β coshβ coshβn − βn sinhβ sinh βn

coshβ(n + 1) coshβn coshβ(n − 1)
.

The sum can be written as
∑

n g(βn) with some function g(x) whose Fourier transform can
be computed explicitly using residue calculus

ĝ(ν) = π2 sin2 πνβ coshπ2ν

sinhβ sinh2 π2ν
.

So application of the Poisson formula (34) yields

∂a

∂β
= 2π

2 sinhβ

β2

∑
n

ĝ

(
n

β

)
= 4π.

On the other hand, the same technique enables one to prove that ∂a
∂Q

= 0. Therefore,
equation (23) is obtained.
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